18 research outputs found

    Where should livestock graze? Integrated modeling and optimization to guide grazing management in the Cañete basin, Peru

    Get PDF
    Integrated watershed management allows decision-makers to balance competing objectives, for example agricultural production and protection of water resources. Here, we developed a spatially-explicit approach to support such management in the Cañete watershed, Peru. We modeled the effect of grazing management on three services – livestock production, erosion control, and baseflow provision – and used an optimization routine to simulate landscapes providing the highest level of services. Over the entire watershed, there was a trade-off between livestock productivity and hydrologic services and we identified locations that minimized this trade-off for a given set of preferences. Given the knowledge gaps in ecohydrology and practical constraints not represented in the optimizer, we assessed the robustness of spatial recommendations, i.e. revealing areas most often selected by the optimizer. We conclude with a discussion of the practical decisions involved in using optimization frameworks to inform watershed management programs, and the research needs to better inform the design of such programs

    Reimagining the potential of Earth observations for ecosystem service assessments

    Get PDF
    The benefits nature provides to people, called ecosystem services, are increasingly recognized and accounted for in assessments of infrastructure development, agricultural management, conservation prioritization, and sustainable sourcing. These assessments are often limited by data, however, a gap with tremendous potential to be filled through Earth observations (EO), which produce a variety of data across spatial and temporal extents and resolutions. Despite widespread recognition of this potential, in practice few ecosystem service studies use EO. Here, we identify challenges and opportunities to using EO in ecosystem service modeling and assessment. Some challenges are technical, related to data awareness, processing, and access. These challenges require systematic investment in model platforms and data management. Other challenges are more conceptual but still systemic; they are byproducts of the structure of existing ecosystem service models and addressing them requires scientific investment in solutions and tools applicable to a wide range of models and approaches. We also highlight new ways in which EO can be leveraged for ecosystem service assessments, identifying promising new areas of research. More widespread use of EO for ecosystem service assessment will only be achieved if all of these types of challenges are addressed. This will require non-traditional funding and partnering opportunities from private and public agencies to promote data exploration, sharing, and archiving. Investing in this integration will be reflected in better and more accurate ecosystem service assessments worldwide

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Modeling Integrated Impacts of Climate Change and Grazing on Mongolia’s Rangelands

    No full text
    Mongolia contains some of the largest intact grasslands in the world, but is vulnerable to future changes in climate and continued increases in the number of domestic livestock. As these are two major drivers of change, it is important to understand interactions between the impact of climate and grazing on productivity of Mongolia’s rangelands and the livelihoods they sustain. We use a gridded, spatially explicit model, the Rangeland Production Model (RPM), to explore the simultaneous and interacting effects of climate and management changes on Mongolia’s rangeland and future livestock production. Comparing the relative impact of temperature, precipitation, and grazing intensity, varied individually and in combination, we find that climatic factors dominate impacts on forage biomass and animal diet sufficiency. Site rainfall strongly mediates the impact of grazing on standing biomass, such that more productive or higher-rainfall sites are more vulnerable to increases in grazing pressure. Gridded simulations covering Mongolia’s Gobi-Steppe ecoregion show that while rangeland biomass is generally predicted to increase under future climate conditions, interactions among spatially varying drivers create strong heterogeneity in the magnitude of change

    Existing Accessible Modeling Tools Offer Limited Support to Evaluation of Impact Investment in Rangeland Ecosystem Services

    No full text
    Privately owned rangelands in the western US support many ecosystem services and are threatened by financial incentives favoring conversion to housing development and more intensive forms of agriculture. Recognizing this threat, the impact investment community has identified rangeland management as a potential investing strategy to produce financial returns while preserving or enhancing the ecosystem services provided by intact rangelands. This strategy is based primarily on the notion that a capital-intensive conversion from continuous to rotational grazing can financially sustain rangelands through a combination of increased productivity and potentially monetized ecosystem service flows. The potential for these gains is supported by compelling anecdotal evidence, yet a robust body of scientific literature based on rigorous field experiments has not supported those claims, nor produced transferrable estimates of the benefits provided by rotational grazing of livestock (particularly cattle in the western US).Therefore, to demonstrate investment viability and measure investment success, impact investors will likely need to address these well-documented disconnects through some combination of monitoring and process-based modeling. This study examines the extent to which existing modeling tools are up to this task, by assessing the ability of two process-based models to represent four specific rotational grazing benefits put forth by impact investors, using a ranch in northeastern Wyoming as a case study. Using the Soil Water Assessment Tool, we simulated high magnitude changes in the water balance from surface runoff to evapotranspiration, which may be a benefit or negative impact depending on context (Benefit 1). We simulated a decrease in soil water storage under rotational grazing, which directly contradicts the outcome assumed in investment literature (Benefit 2). Using the InVEST beta Rangeland Production Model (based on the Century ecosystem model), we simulated increased biomass productivity (Benefit 3) under rotational grazing, which enhanced animal performance under some management parameters but negatively impacted it in others (Benefit 4). We conclude that the impact investing community will likely find greater success through a shift to objective-oriented ranch management, rather than a specific focus on rotation, and will also need additional investment in science and monitoring to demonstrate benefits.Peer reviewe

    Measures of response in clinical trials of systemic sclerosis: the combined response index for systemic sclerosis (CRISS) and Outcome Measures in Pulmonary Arterial Hypertension related to Systemic Sclerosis (EPOSS)

    Full text link
    There have been steady efforts to develop a combined response index for systemic sclerosis (CRISS). A parallel and equally successful effort has been made by an Expert Panel on Outcome Measures in PAH related to Systemic Sclerosis (EPOSS) to measure effect in treatment of pulmonary arterial hypertension of systemic sclerosis (PAH-SSc). CRISS conducted a Delphi process combined with expert review to identify 11 candidate domains for inclusion in a core set of outcomes for SSc clinical trials: soluble biomarkers, cardiac, digital ulcers, gastrointestinal, global health, health related quality of life (HRQOL) and function, musculoskeletal, pulmonary, Raynaud's, renal, and skin. Tools within domains were also agreed upon. Concentrating on one aspect of disease, PAH, EPOSS also conducted a Delphi process and judged the following domains as the most appropriate for randomized controlled trials in PAH-SSc: lung vascular/pulmonary arterial pressure, cardiac function, exercise testing; severity of dyspnea, discontinuation of treatment; quality of life/activities of daily living; global state; and survival. Possible useful tools within each domain were also agreed on. Patient derived, physician derived, and objective measures of response will be included and combined with the idea that each reflects different aspects of PAH (EPOSS) and overall disease (CRISS) although this assumption may not prove true and can be separated if statistically and clinically valid to do so. In either case, prospective studies will require measurement of all domains, and tools are required and will be developed to define appropriate combined measures of response. CRISS and EPOSS are being developed through the OMERACT process. Through Delphi process and literature review significant progress has been made for both indices, and prospective data are being collected
    corecore